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Péter Lévay
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Abstract. The quantization of the chaotic geodesic motion on Riemann surfaces�g,κ of constant
negative curvature with genus g and a finite number of points κ infinitely far away (cusps) describing
scattering channels is investigated. It is shown that terms in Selberg’s trace formula describing
scattering states can be expressed in terms of a renormalized time delay. This quantity is the time
delay associated with the surface in question minus the time delay corresponding to the scattering
problem on the Poincaré upper half-plane uniformizing our surface. Poles in these quantities
give rise to resonances reflecting the chaos of the underlying classical dynamics. Our results are
illustrated for the surfaces�1,1 (Gutzwiller’s leaky torus),�0,3 (pants), and a class of�g,2 surfaces.
The generalization covering the inclusion of an integer B � 2 magnetic field is also presented. It
is shown that the renormalized time delay is not dependent on the magnetic field. This shows that
the semiclassical dynamics with an integer magnetic field is the same as the free dynamics.

1. Introduction

The quantization of the free motion of a particle on a surface of constant negative curvature
has generated considerable interest over the past few years. From the classical point of view it
provides a simple example of a dynamical system with hard chaos [1]. Moreover, according
to the general philosophy of quantum chaos, in order to learn more about such systems it is
instructive to investigate how this irregular behaviour manifests itself in the corresponding
quantum system. It is now well known that the semiclassical trace formula of Gutzwiller [2]
relating the classical periodic orbits to the quantum energy spectrum becomes exact and
coincides with Selberg’s trace formula [3] derived using pure group theoretical considerations.
This striking coincidence has become the starting point of further investigations of Selberg’s
trace formula in order to establish the correspondence between the distribution of energy levels
and the nontrivial zeros of the spectral zeta function expressed as a product over the periodic
orbits [4]. As a next step, Comtet et al [5] observed that existing generalizations of the Selberg
trace formula (well known to mathematicians) can be used to describe the physical situation
of the motion of a particle on our surface in a constant magnetic field. These investigations,
however, used compact-type surfaces only giving rise to bound states, or noncompact ones
using special boundary conditions, hence ‘killing out’ the scattering states.

The description of scattering states and the corresponding S-matrices on noncompact
surfaces was initiated by Faddeev [6], and developed in the book of Lax and Phillips [7].
The physical interpretation of these results in the context of quantum chaos was given by
Gutzwiller [8,9], the systematic adaptation of these ideas to surfaces with a multitude of cusps
(i.e. points infinitely far away) regarding them as multichannel scattering systems is due to
Pnueli [10].

0305-4470/00/234357+20$30.00 © 2000 IOP Publishing Ltd 4357



4358 P Lévay

However, as far as physics is concerned these studies pay no attention to the role these
quantities play in the generalization of Selberg’s trace formula also valid for noncompact
surfaces with a multitude of cusps. To the best of our knowledge, apart from a comment in the
book of Gutzwiller [9] trying to interpret the sum appearing in the asymptotic behaviour of the
scattering states as the analogue of the semiclassical trace formulae for positive energies, no
work has tried to clarify such issues based on the exising trace formula itself. The aim of this
paper is to fill this gap. Here we show that though the terms describing the scattering states
in this formula seem formidable at first sight, they can be written in a nice form amenable
to a natural physical interpretation. Our aim was also to present known mathematical results
scattered throughout the literature in a form accessible to physicists.

The organization of this paper is as follows. In section 2 we describe our models of
chaotic scattering. Here we review a number of results well known to mathematicians, which
may sound, however, unfamiliar to physicists. Section 3 is devoted to a description of the
scattering problem on the upper half-plane. Selberg’s trace formula for noncompact finite-
area surfaces with a multitude of cusps is introduced in section 4. It is rewritten in a nice form
in terms of the Wigner–Smith time delays of the scattering problem on the surface and the
upper half-plane uniformizing the surface. In section 5 we relate scattering resonances to the
poles of the renormalized time delay. In section 6 we introduce the resolvent trace formula
usually used in numerical calculations. Here we discuss the zeros of Selberg’s zeta function
and pay special attention to the zeros corresponding to scattering resonances. Here we also
rewrite the functional equation for Selberg’s zeta function in terms of the renormalized S-
matrix. In section 7, by employing three particular models of chaotic scattering, the parabolic
terms describing scattering states in the trace formula are examined. The first is Gutzwiller’s
leaky torus, the canonical example of chaotic scattering. The second is a surface with three
cusps (pants). We also discuss a class of surfaces with two cusps corresponding to the choice
of Hecke congruence groups �0(p), where p is a prime number of the form p = 11 + 12k,
k = 0, 1 . . . . In section 8 we consider the problem of quantization of the motion of a particle
on our surface in a constant integer magnetic field B � 2. We show that the parabolic terms
in the trace formula can again be expressed in terms of a renormalized time delay. However,
now the time delay turns out to be independent of B. Our conclusions are left for section 9.

2. Chaotic scattering on Riemann surfaces

A large class of scattering systems exhibiting hard chaos can be obtained by considering the
geodesic motion on noncompact Riemann surfaces�g,κ,e with finite area and constant negative
Gaussian curvature. Here g denotes the genus (i.e. the number of ‘holes’) and κ stands for the
number of cusps or leaks [8, 10] producing the scattering channels. The subscript e denotes
the possible occurrence of the so-called elliptic points, their presence renders � to be an
orbifold rather than a manifold. Though the terms corresponding to scattering states we are
to describe here are not affected by such points, in the following, unless stated explicitly,
we only consider surfaces without such points and assume that 2g + κ � 3. The geodesic
motion on such surfaces is known to be strictly ergodic and even strongly chaotic. From the
mathematical point of view these surfaces can be obtained via Riemann uniformization which
means the following. Take the Poincaré upper half-plane H ≡ {z = x + iy ∈ C|y > 0}, with
the Poincaré metric ds2 = y−2((dx)2 + (dy)2) of Gaussian curvature K = −1, and form the
right coset �\H, where � is a Fuchsian group of the first kind acting on H discontinuously.
Uniformization means that we represent our Riemann surface as this right coset viewed as a
fundamental domain in H with its boundary points identified by elements of �, i.e. we have
�g,κ ∼ �\H. The copies of the fundamental domain give a tessellation of the upper half-
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plane. � is a discrete subgroup of PSL(2,R), the group of fractional linear transformations
γ = (ab|cd), γ z = az+b

cz+d , with the properties a, b, c, d,∈ R and ad − bc = 1. Such discrete
subgroups have a finite number of generators, and the noneuclidean area V of �g,κ is finite.
Recall that using the Gauss–Bonnet theorem the area can be expressed as V = 2π(2g−2+κ).
The generators of � form the letters of an alphabet, and the elements of � are the possible
words that can be combined from such letters. There are, however, some defining relations that
can be used to simplify all possible combinations. Moreover, the triple (g, κ, e) is determined
by the structure of the group [11]. The canonical example is the modular group PSL(2,Z)
with a, b, c, d ∈ Z and ad−bc = 1, generated by the letters U : z → − 1

z
andW : z → z+ 1,

with the triple (0, 1, 2) and defining relations U 2 = (UW)3 = I . An important class of �
arises by considering the subgroup

�(N) ≡
{
γ ∈ SL(2,Z) : γ ≡

(
1 0
0 1

)
(modN)

}
(1)

which is called the principal congruence group of levelN . Any subgroup of the modular group
which contains �(N) is called a congruence subgroup of level N .

The quantum systems arising from the quantization of the geodesic motion on �g,κ are
governed by Schrödinger’s equation Hψ = Eψ , with the Hamiltonian H = −�, where
� = y2(∂2

x +∂2
y ) is the Laplacian on H corresponding to the Poincaré metric, withψ(z) subject

to the boundary condition ψ(γ z) = ψ(z) for all γ ∈ � and z ∈ H. (We set h̄ = 2m = 1 for
convenience.) The spectrum ofH is known to be both discrete and continuous [12]. Scattering
solutions corresponding to the continuous spectrum with E = 1

4 + k2, are described by the
Eisenstein series which we now briefly review. (For physicists, a good reference on Eisenstein
series can be found in [10], for the mathematically oriented reader we refer to [13].)

The transformations γ ∈ � are called parabolic (hyperbolic and elliptic) if | Tr γ | = 2,
(>2, and<2, respectively). Such transformations can be shown to be conjugate to a translation
z → z + a, a ∈ R (dilatation z → bz, b > 0, rotation, respectively). Among the generators
of � there are κ parabolic ones P1, P2, . . . , Pκ . The fixed points of these generators are the
cusps. They will be denoted by z1, z2, . . . , zκ and taken to be the elements of R ∪ ∞ (the
boundary of H) since they are infinitely far away with respect to the Poincaré metric. Under
the identification of �\H and �g,κ the cusps correspond to punctures (‘leaks’) of our surface
describing scattering channels. For each α = 1, 2, . . . κ , the Pα generate an infinite cyclic
subgroup �α of �, the stability subgroup of cusp α. Since parabolic elements are conjugate
to a translation we can choose an element of σα ∈ SL(2,R), such that σα∞ = zα and
σ−1
α Pασα = (1 ± 1|01). We denote by �∞ the infinite cyclic group generated by W with its

fixed point being ∞ the standard cusp. This is the group consisting of elements of the form
±(1b|01), b ∈ Z. The Eisenstein series Eα(z, s) corresponding to the cusp zα of � is defined
for Re s > 1 by the absolutely convergent series

Eα(z, s) =
∑

γ∈�α\�
Im (σ−1

α γ z)s α = 1, 2, . . . , κ. (2)

In this way the Eisenstein series defined satisfies the Schrödinger equation, i.e. HEα(z, s) =
s(1 − s)Eα for each α = 1, 2, . . . , κ , and the boundary condition Eα(γ z, s) = Eα(z, s) for all
γ ∈ �. Of course, we are interested in the choice s = 1

2 + ik with k ∈ R. For this purpose
we need a meromorphic continuation of Eα(z, s) over the whole s-plane. This continuation
exists and the poles of Eα(z, s) are all simple and in the segment 1

2 < s � 1. One can derive
a Fourier expansion of Eα(z, s) at the cusp β which is of the form

Eα(σβz, s) = δαβy
s + ϕαβ(s)y

1−s +
∑
n�=0

ϕαβ(n, s)Ws(nz) (3)
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where

ϕαβ(s) = π1/2�(s − 1/2)

�(s)

∑
c>0

c−2sSαβ(0, 0; c) (4)

ϕαβ(n, s) = πs

�(s)
|n|s−1

∑
c>0

c−2sSαβ(0, n; c). (5)

Here Sαβ(m, n; c) are the so-called Kloosterman–Gauss–Ramanujan sums defined by

Sαβ(m, n; c) =
∑

γ=(a∗|cd)∈�∞\σ−1
α �σβ/�∞

e2π i(ma+nd)/c (6)

and

Ws(z) = 2|y|1/2Ks−1/2(2π |y|)e2π ix (7)

is Whittaker’s function on z ∈ C\R. Due to the asymptotic behaviour Ws(z) ∼ e−2πy , as
y → ∞ the nonzero Fourier coefficients in equation (3) dye out exponentially when we
approach any of our cusps. Hence only the term δαβys +ϕαβ(s)y1−s from equation (3) survives
near the cusps. Since ys and y1−s correspond to the incoming and outgoing plane waves in
hyperbolic geometry we are left with the correct asymptotic behaviour for scattering states.
Moreover, from this it is clear that ϕαβ( 1

2 + ik) has to be proportional to the scattering matrix

S
�\H
αβ (k) of our surface �\H. Indeed, according to [7]

S
�\H
αβ (q, k) = −q−2ikϕβα(

1
2 + ik) (8)

where 0 < q ∈ R is arbitrary. For the mathematical proof of equation (8) we refer to [7]. In
order to give some physical insight to its meaning we remark that the ‘interaction’ associated
with our scattering problem is merely dictated by the geometrical properties of our surface.
Hence we have no ‘free dynamics’, in the usual sense, with respect to which our system
should be defined. However, we can proceed as follows [9]. We can put a ring (in hyperbolic
geometry this is called a horocycle) on each cusp, regularizing the infinite length of the geodesic
corresponding to the scattering trajectory coming from and then going to infinity through the
leak. Using the σα transformations the neighbourhood of each cusp (cuspidal zone) can be
mapped to the semi-strip Fq ≡ {z ∈ H|y > q, 0 < x < 1}. Hence the value of q defines
the horocycle which plays the role of a monitoring station; this is the place where the particle
is registered after being scattered. This choice tells us where the ‘free dynamics’ start. The
minus sign in equation (8) results in the nice property of S�\H

αβ (k) proved in proposition 8.14
of [7]:

S
�\H
αβ (0) = δαβ (9)

moreover, S�\H
αβ (k) is unitary and symmetric [7].

In order to know the scattering matrix of a particular surface the quantity ϕαβ present in
equation (4) has to be calculated. For this purpose, after fixing � uniformizing our surface,
we have to describe the double cosets appearing in (6), and characterize our cusps—this
is generally an arduous task. However, in spite of this we are provided with a variety of
ϕαβ matrices for different groups � having been calculated for different purposes by number
theorists; see in particular, Hejhal’s book [12]. These results were first communicated to
physicists in [8–10, 14].

3. The scattering problem on the upper half-plane

We have seen that the space uniformizing our Riemann surfaces is the upper half-plane H.
Hence for later use it will be useful to describe scattering matrices associated with the Poincaré
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upper half-plane H itself. It is well known that H can be described as the Riemannian symmetric
space H ∼ SL(2,R)/SO(2). General symmetric spaces of noncompact type have already
been widely used in algebraic scattering theory (AST), in order to describe quantum mechanical
scattering problems characterized by a semisimple noncompact symmetry group G (see the
paper of F Iachello in [15] and [16,17]). In AST it is assumed that the Hamiltonian governing
the scattering process is simply a function of the quadratic Casimir operator C ofG. Then it is
proved that the functional form of the S-matrix can be found (up to some arbitrary functions)
via group theoretical manipulations alone, once a subgroup chain G1 ⊂ G2 ⊂ · · ·G has
been chosen. The remaining functions in S can be fixed by using a particular coordinate
realization for G acting on some space. For SL(2,R) acting on H, the parabolic subgroup
E(1) generated by the infinitesimal operator −i∂x alone, plays a special role simply generating
translations along the x direction of the upper half-plane. Hence we chose the subgroup
chain as E(1) ⊂ SL(2,R). Note that this is a noncanonical choice since the particular form
H ∼ SL(2,R)/SO(2) would rather imply the choice SO(2) ⊂ SL(2,R). In [17] other
nonstandard choices have been shown, and using the intertwining operator method the S-
matrices have been calculated. For the subgroup chain E(1) ⊂ SL(2,R) the functional form
of the S-matrix turns out to be

SH(k) = |λ|−2ikc(k) |c(k)| = 1 (10)

where λ ∈ R is the eigenvalue associated with the E(1) subgroup. In order to specify the
function c(k), we chose the standard realization of the SL(2,R) algebra, i.e. the infinitesimal
generators of the SL(2,R) action on H (see, e.g., [14]). The Casimir operator C for SL(2,R)
is just the Laplace–Beltrami operator � on H, and the scattering Hamiltonian is identified as
−(C + 1

4 ), with eigenvalue k2.
Hence on H we have to solve the equation y2(∂2

x+∂2
y )5(x, y) = s(s−1)5(x, y). Inserting

s = 1
2 + ik then gives the scattering states. Of course, we also have to clarify the asymptotic

behaviour of the solutions characterizing the scattering states. We seek solutions in the form
5(x, y) = F(x)G(y), this yields, after the separation of variables, two ordinary differential
equations,

G′′

G
(y)− s(s − 1)y−2 = Q = −F

′′

F
(x) (11)

where Q is a separation constant. Solving for F(x) gives F(x) = exp (iλx) with Q = λ2.
Setting G(y) = y1/2R(y) shows that R(y) satisfies

y2R′′ + yR′ − ((λy)2 + (s − 1
2 )

2)R = 0. (12)

If λ = 0 then G(y) = ys , for λ �= 0 G(y) = y1/2Ks−1/2(|λ|y). Using the functional equation
Ks(z) = K−s(z) for Re (z) > 0 and the asymptotics Ks(z) ∼ 2s−1�(s)z−s for Re s > 0
and Re z > 0 as z → 0 of K-Bessel functions [18] we obtain the following formula for the
asymptotic behaviour of G(y):

G(y) ∼ 2ik�(ik)|λ|−iky
1
2 −ik + 2−ik�(−ik)|λ|iky 1

2 +ik as y → 0+. (13)

From this we can read off the S-matrix:

SH(|λ|, k) =
( |λ|

2

)−2ik
�(ik)

�(−ik)
= −

( |λ|
2

)−2ik
�(1 + ik)

�(1 − ik)
λ �= 0 (14)

where we have used the formula �(z + 1) = z�(z). We can compare this result valid for H
with the one obtained for �\H, see equations (4), (6) and (8). We can see that the positive
numbers q and |λ| play a similar role by acting as scaling parameters in the corresponding
S-matrices.
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Before concluding this section we remark that by using the substitution y(r) = e−r ,
equation (12) can be written as(

d2

dr2
− λ2e−2r + k2

)
R(r) = 0 (15)

which is just a Schrödinger equation in one dimension with a potential V (r) = λ2e−2r . Hence
our S-matrix of equation (14) is the scattering matrix for this problem.

4. Selberg’s trace formula and the renormalized time delay

Now we are ready to introduce Selberg’s trace formula valid for noncompact surfaces having
finite area. Let h(k) be a function satisfying the following conditions:

h(k) is even
h(k) holomorphic in the strip |Im k| � 1

2 + ε
h(k) � (|k| + 1)−2−ε in the strip.

(16)

In order to motivate the physical meaning of h(k), we note that the special choice h(k) =
e−(1/4+k2) = e−Et enables one to study the properties of the heat kernel et� of �. Let, moreover,
g(u) = 1

2π

∫ +∞
−∞ e−iukh(k) dk be the Fourier transform of h(k). Then, Selberg’s trace formula

for noncompact surfaces without elliptic points is [12]∑
j

h(kj ) = V

4π

∫ +∞

−∞
kh(k) tanh(πk) dk +

∑
PPO

∞∑
n=1

l(p)

2 sinh(nl(p)/2)
g(nl(p))

+
1

4
h(0)Tr

(
I −>

(
1

2

))
− κg(0) log 2 − κ

2π

∫ ∞

−∞
h(k)ψ(1 + ik) dk

+
1

4π

∫ ∞

−∞
h(k)Tr

(
>′
(

1

2
+ ik

)
>

(
1

2
+ ik

)−1
)

dk. (17)

Here V = 2π(2g − 2 + κ) is the area of the surface, > is the κ × κ matrix with entries ϕαβ
as given by (4), ψ(z) ≡ �′

�
(z) is the digamma function [18], I is the κ × κ identity matrix.

Ej ≡ 1
4 + k2

j are the energy values belonging to the discrete part of the spectrum. The first
two terms on the right-hand side of the formula are well known from studies concerning the
compact case [9]. The first is the so-called Weyl term, and the second contains the sum over
the primitive periodic orbits (PPO) of primitive length l(p). The repetitions of the orbits are
indexed by n. The remaining four terms, which are our main concern here, correspond to the
modification of the trace formula due to the presence of scattering states. In the following we
shall refer to these terms as the parabolic contribution to the trace formula.

Our aim is now to rewrite the parabolic contribution in a physically more transparent form.
Indeed, during algebraic manipulations found in the mathematical literature the physical origin
and meaning of these terms is by no means clear. As a first step, using the fact that h(k) is
even, we rewrite the second and third terms of this contribution in the form

− κ

4π

∫ ∞

−∞
h(k)(2 log 2 + ψ(1 + ik) + ψ(1 − ik)) dk

= +i
κ

4π

∫ ∞

−∞
h(k)∂k log

(
22ik �(1 + ik)

�(1 − ik)

)
dk. (18)

Similarly, for the fourth term using the identity Tr logM = log DetM , we get

1

4π

∫ ∞

−∞
h(k)Tr

(
>′
(

1

2
+ ik

)
>

(
1

2
+ ik

)−1
)

dk
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= − i
1

4π

∫ ∞

−∞
h(k)∂k log Det

(
>

(
1

2
+ ik

))
dk. (19)

Let us now define the κ × κ matrix using equation (14):

SH
αβ(|λ|, k) ≡ SH(|λ|, k)δαβ. (20)

Moreover, recalling equation (8), we then have two matrices SH
αβ(|λ|, k) and S�\H

αβ (q, k)which
are also dependent on the positive quantities q and |λ|. In addition, we know that with the
help of q we can fix where the free dynamics starts. Let us refer our dynamics on �\H to the
dynamics on H by giving q and |λ| the same values. With this convention the quantity

−i
1

4π

∫ ∞

−∞
h(k)∂k log DetS(k) dk S(k) ≡ S�\H(k)(SH(k))−1 (21)

is independent of q = |λ| and equals the last three terms of our parabolic contribution.
Moreover, by virtue of equations (8) and (9) the first term from the parabolic contribution
is κ

2h(0). Since scattering matrices always occur in the combination as shown in (21), in the
following we shall refer to them as S�\H(k) and SH(k), i.e. as the ones independent of q and
|λ|. Moreover, we call S(k) the renormalized S-matrix.

Introducing the Wigner–Smith time delay [19] for the corresponding S-matrices as

T �\H(k) ≡ i

2k
∂k log DetS�\H(k) (22)

(and similarly for SH(k)) we can finally write the parabolic contribution (dE = 2k dk) in the
nice form

κ

2
h(0)− 1

2π

∫ ∞

0
h(E)T (E) dE where T (E) ≡ T �\H(E)− T H(E) (23)

which is the main result of the paper. We shall refer to T (E) as the renormalized time delay.
This quantity is the time delay associated with the surface in question minus the time delay
corresponding to the scattering problem on the Poincaré upper half-plane uniformizing our
surface.

We now make a few important comments. Intuitively, the time delay can be imagined as
the difference between the time spent by the scattered particle within the region of interaction
and the time that it would have spent in the same region had it moved freely. In our case the
free dynamics is the one on the Poincaré upper half-plane H. Here, the particle trajectory is
determined by the intrinsic geometry of H. When quantizing this free (geodesic) motion we
have to solve Schrödinger’s equation Hψ = Eψ , where H represents −�. When replacing
the free dynamics by the interacting one, the role of interaction is not played by an interaction
term (potential) but by the special boundary condition we impose on the free system. When
quantizing, this interaction manifests itself via the condition ψ(gz) = ψ(z) g ∈ � we impose
on the wavefunction. Now interaction is just restriction of the motion to the fundamental
domain �\H in H. Identifying the free and interacting dynamics in this way, being a time
difference we can alternatively regard the renormalized time delay of equation (23) as the time
delay for a scattering problem which is purely geometric in origin.

Turning back to our trace formula first, we chose h(k) = e−(1/4+k2)t = e−Et . Clearly,
this function satisfies the conditions of equation (16). Then the left-hand side of the trace
formula is simply Tr et�, i.e. the trace of the heat kernel of �. In this case it is easy to
show that g(u) = 1√

4πt
et/4−u2/4t , which is to be used in the second and fourth terms on the

right-hand side of equation (17). Now equation (23) shows that up to the term κ
2h(0) the

parabolic contribution taking into account the scattering states is just a Laplace integral of
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the renormalized time delay T (E). Note that the term
∑
j h(kj ) on the left-hand side of

equation (17) can also be written as a Laplace integral,∑
j

e−Ej t =
∫ ∞

0
e−Etρ(E) dE with ρ(E) = dN(E)

dE
= δ

∑
j

(E − Ej) (24)

where N(E) is the number of eigenstates with energy �E, and ρ(E) is the density of states
for the discrete part of the spectrum. Looking at expression (23) we see that the term

1
2π

∫∞
0 e−EtT �\H(E) dE plays a similar role for the continuous part of the spectrum. With this

observation the trace formula takes the form∫ ∞

0
e−Etρ(E) dE +

1

2π

∫ ∞

0
e−EtT (E) dE − f0(t) =

∑
PPO

∞∑
n=1

l(p)

2 sinh(nl(p)/2)
g(nl(p))

(25)

where

f0(t) ≡ V

4π

∫ ∞

0
e−Et tanh(π

√
E) dE +

κ

2
e−t/4

g(nl(p)) = 1√
4πt

et/4−(nl(p))2/4t .
(26)

This equation represents the response of our quantum system at the time t > 0 for a perturbation
from the outside coming as a sharp blow at time t = 0. Note that the left-hand side of this
formula contains the quantum mechanical quantities ρ(E) and T (E), while the right-hand side
is purely classical.

Moreover, recall that the quantity N�\H(E) = ∫ E
0 ρ(E

′) dE′ is just the number of
eigenvalues of −� on �\H in the discrete part of the spectrum less then E. Similarly, we can
define the quantity

M�\H(E) = 1

2π

∫ E

0
T �\H(E′) dE′ (27)

to play the role of a counting function for the continuous spectrum. It is just the integral of
Wigner’s time delay calculated for the scattering problem on �\H from 0 to the value E. The
asymptotic behaviour of the sum N�\H(E) +M�\H(E) is Weyl’s law, its strongest form for a
general surface (see [21] and references therein) is

N�\H(E) +M�\H(E) = V

4π
E − κ

π

√
E log

√
E + c�

√
E + O

( √
E

log
√
E

)

as E → ∞ (28)

with c� is a constant. It remains an open question as to which part of the spectrum is larger.
For the special case of congruence groups Selberg has proved that M�\H(E) is much smaller
than N�\H(E), and there are indications that the opposite situation for generic groups is more
likely to occur [21].

5. Resonances

The renormalized time delay introduced in the previous section is a function of the scattering
energy. It is a measure of the time spent by the particle in the leaky box. It can occur that for
special values of the energy the particle is captured for a much longer period of time. For such
values we have resonance.
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The T H(k) part of the renormalized time delay is [18]

T H(k) = −κ
k
(log 2 + Reψ(1 + ik)) = −κ

k

(
log 2 − γ + k2

∞∑
n=1

1

n(n2 + k2)

)
(29)

where γ = 0.577 21 . . . is Euler’s constant. Moreover, since ψ(1) = −γ we have
limk→0 kT

H(k) = κ(γ − log 2), and limk→∞ kT H(k) � − log 2k. Hence −kT H(k) is
a slowly varying function of k increasing monotonically from κ(log 2 − γ ) > 0 with an
asymptotic log 2k behaviour. Hence T H(k)merely gives a slowly varying smooth contribution
to T (k) = T �\H(k)− T H(k).

In order to find resonances we have to investigate the pole structure of the T �\H(s) part
of T (s) as a function of the complex variable. To do this we first note that the matrix ϕαβ(s) as
given by (4) is just a Dirichlet series for Re s > 1. Hence its determinant needed for the (22)
time delay T �\H(s) ∼ 1

2s−1∂s log Det>(s) is also given by a Dirichlet series, i.e.

Det>(s) =
(
π1/2�(s − 1/2)

�(s)

)κ ∞∑
n=1

ang
−2s
n (30)

with a1 �= 0 and 0 < g1 < g2 < · · · < gn → +∞. It is known [12] that for Re s � 1
2 , Det>(s)

has a finite number of poles, sa = Ca , a = 0, 1, 2 . . .M , all in the interval 1
2 < sa � 1.

Moreover, we also have the relation Det>(s)Det>(1 − s) = I . These poles give rise to the
eigenvalues 0 � Ea = sa(1 − sa) < 1

4 in the so-called residual spectrum. The value E0 = 0
with the value s0 = 1 corresponds to the constant normalized solution 50 ≡ V −1/2 of the
Hamiltonian H = −�. For Re s < 1

2 the poles are denoted by sµ = Cµ + iηµ, µ = 1, 2, . . . .
Then, we have the formula [12]

−∂s log Det>(s) =
∑
j

(
1

s − sj − 1

s − 1 + s∗j

)
+ 2 log g1 (31)

where the sum for j is over a = 1, 2 . . .M , and µ = 1, 2, . . . . Hence on the critical line
s = 1

2 + ik for T �\H(k) we have

T �\H(k) = 1

2k

(∑
µ

1 − 2Cµ
( 1

2 − Cµ)2 + (k − ηµ)2
+

M∑
a=0

1 − 2Ca
( 1

2 − Ca)2 + k2
+ 2 log g1

)
. (32)

Note that the first sum on the right-hand side of this formula is positive and the second
(corresponding to the possible presence of the residual spectrum) is negative. An important
theorem states that for congruence groups we have no residual spectrum besides the obvious
point s0 = 1 [21]. Hence in this case the second sum merely gives the term − 1

2k
1

1/4+k2 . Terms

coming from the first sum with Re sµ < 1
2 give rise to poles corresponding to resonances.

Using equations (27) and (32), an easy application of Cauchy’s theorem shows that the counting
function M�\H(E) is approximately equal to the number of complex poles (resonances) with
imaginary part less then E, on the left of the critical line s = 1

2 + i
√
E. The distribution of

these poles shows the irregular behaviour of the quantum scattering problem, hence reflecting
the chaotic nature of the associated classical dynamics.

Since T H(k) merely gives a slowly varying smooth contribution to T (k) = T �\H(k) −
T H(k), the expression for T (k) is dominated by terms of the form

T (k) ∼ 1

k

∑
µ

�µ/2

(k − kµ)2 + (�µ/2)2
(33)

which consist of a collection of Lorentzians centred at kµ ≡ ηµ, with a half width �µ/2 =
1
2 − Cµ. The quantity (( 1

2 − Cµ)ηµ)−1 can be thought of as a resonance lifetime. The allowed
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values for the quantities kµ and �µ are determined by the number theoretic properties of the
Dirichlet series appearing in the determinant of the S-matrix. In turn, these properties can
be traced back to the behaviour of the Kloosterman sums in (4). Note that when the distance
between adjacent values of kµ becomes less than �µ the resonances start to overlap. This
shows that the statistical properties of the resonances have to be investigated by the general
methods developed by Fyodorov and Sommers [22] for studying the chaotic behaviour of
quantum scattering.

6. The resolvent trace formula

In order to use the trace formula of equation (17) to relate the quantal data to the classical, we
choose a special function h(k) and exploit the pole structure of the renormalized time delay.
Let us choose h and g as follows:

hs,σ (k) = ((s − 1
2 )

2 + k2)−1 − ((σ − 1
2 2)2 + k2)−1

gs,σ (u) = e−|u|(s−1/2)

2s − 1
− e−|u|(σ−1/2)

2σ − 1
.

(34)

Here σ > Re s > 1, and σ is the regulator. This constraint is sufficient for ensuring the
conditions listed in (16) for h(k). In this case the final formula, called the resolvent trace
formula, can be written as∑

j

(
1

(s − 1/2)2 + k2
j

− 1

(σ − 1/2)2 + k2
j

)
= F(s)− F(σ ) (35)

where

F(s) = − V

2π
ψ(s) +

2

2s − 1

∑
PPO

∞∑
m=0

l(p)

e(s+m)l(p) − 1
+

2κ

(2s − 1)2
− 1

2π

∫ ∞

0
hs(E)T (E) dE

(36)

where hs(E) ≡ (s(s − 1) + E)−1, and T (E) are given by equations (22) and (23). For the
derivation of the first two terms of this formula we refer to the paper of McKean [20]. In
order to conform with the usual notation used by physicists for the Weyl term, we note that
ψ(s) − ψ(σ) = ∑∞

n=0(σ + n)−1 − (s + n)−1 [18]. The second term on the right-hand side
of equation (36) represents the sum over classical periodic orbits well known from studies of
quantum chaos on compact surfaces. Introducing Selberg’s zeta function

Z(s) =
∏
PPO

∞∏
m=0

(1 − e−(s+m)l(p)) Re (s) > 1 (37)

this sum over the periodic orbits can be written with the help of the logarithmic derivative of
Z(s) as

1

2s − 1

Z′

Z
(s) = 1

2s − 1

∑
PPO

∞∑
m=0

l(p)

e(s+m)l(p) − 1
. (38)

Substituting this into equation (36), we expect that the resolvent trace formula will give the
analytic continuation of Z

′
Z
(s) to the whole complex plane. In order to fulfil our expectations

we have to clarify the pole structure of the fourth term in equation (36), which is the main
contribution corresponding to the scattering states. Since we are only interested in the pole
structure, in the following we only work up to s-independent terms. First, we evaluate the
integral

1

2π

∫ ∞

0
hs,σ (E)T

H(E) dE = − κ

2π

∫ ∞

−∞
hs,σ (k)(log 2 + ψ(1 + ik)) dk. (39)
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Using the formula [18]

ψ(1 + z) = −γ +
∞∑
n=1

(
1

n
− 1

(z + n)

)
(40)

and the residue theorem for a suitable contour C, one has to evaluate the integral
− κ

2π i

∫
C
hs,σ (z)ψ(1 + z) dz. The result is

− 1

2π

∫ ∞

0
hs(E)T

H(E) dE = κ

( ∞∑
n=1

1

(s − 1/2)2 − n2
− ψ(3/2 − s)

2s − 1

)
+ · · · (41)

where the dots refers to the s-independent terms.
Our next task is to present a similar calculation for the quantity

− 1

2π

∫ ∞

0
hs,σ (E)T

�\H(E) dE = −i
1

4π

∫ ∞

−∞
hs,σ (k)∂k log Det

(
>

(
1

2
+ ik

))
dk (42)

where> is the κ×κ matrix with entries ϕαβ as given by (4) and related to the scattering matrix
by (8).

Now one has to evaluate the integral 1
4π i

∫
CR
hs,σ (z)∂z log Det(>(z)) dz, whereCR consists

of a line starting at the point 1
2 − iR and ending at 1

2 + iR; we close the contour with a
half-circle of radius R going through the point 1

2 − R. Here we remind the reader that
hs,σ (z) = [(s − 1

2 )
2 − (z − 1

2 )
2]−1 − [(σ − 1

2 )
2 − (z − 1

2 )
2]−1 which has poles at z = s

and z = 1 − s. The quantity ∂s log Det>(s) for Re z < 1
2 has the poles zµ, µ = 1, 2, . . . ,

in the integration contour CR . They give a contribution to the logarithmic derivative with
negative residue. The poles za , a = 0, 1, . . .M , located at the interval 1

2 < Re z � 1 are not
contained in CR . However, due to the functional equation [12] Det>(s)Det>(1 − s) = 1 the
poles of Det>(s) in 1

2 < Re z � 1 are the zeros of Det>(1 − s) in 0 � Re z < 1
2 , hence they

give a contribution to the logarithmic derivative with positive residue. The contribution from
the half-circle in the limit R → ∞ is zero due to the pole structure of ∂s log Det>(s) and the
properties of the function hs,σ . Now, using the residue theorem we get the following result:

− 1

2π

∫ ∞

0
hs,σ (E)T

�\H(E) dE

= 1

2

1

2s − 1
∂s log Det>(s) +

1

2

M∑
a=0

1

(s − 1/2)2 − (za − 1/2)2

−1

2

∑
µ

(
1

(s − 1/2)2 − (zµ − 1/2)2
− 1

(σ − 1/2)2 − (zµ − 1/2)2

)
+ · · · .

(43)

Here, as usual, the dots indicate the presence of s-independent terms. Note that
1

2s−1∂s log Det>(s) is just the time delay analytically continued to the whole complex plane
s. Moreover, since the µ sum is infinite we also included the σ > 1 term, rendering our sum
absolutely convergent.

Now we have every term to characterize the poles and zeros of Selberg’s zeta function
Z(s). Indeed, collecting everything up to s-independent terms we have

1

s − 1/2

Z′

Z
(s) = V

π
(ψ(s)− ψ(σ)) + T (s) +

∑
j

(
1

(s − 1/2)2 + k2
j

− 1

(σ − 1/2)2 + k2
j

)

+
∑
µ

(
1

(s − 1/2)2 − (zµ − 1/2)2
− 1

(σ − 1/2)2 − (zµ − 1/2)2

)
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−
M∑
a=0

1

(s − 1/2)2 − (za − 1/2)2
− 2κ

∞∑
n=1

1

(s − 1/2)2 − n2

−κ 1

(s − 1/2)2
+ · · · (44)

T (s) ≡ 1

2s − 1

(
2κ

(
ψ

(
3

2
− s

)
+ log 2

)
− ∂s log Det>(s)

)
. (45)

Using the well known properties of the logarithmic derivative of a complex meromorphic
function one can easily see that the nontrivial zeros of Z(s) are as follows. (a) They are on the
line Re s = 1

2 localized symmetrically with respect to the real axis, or sj ∈ [0, 1] symmetrically
with respect to s = 1

2 . They correspond to the eigenvalues of H , Ej = sj (1 − sj ) of the form
sj = 1

2 + ikj , corresponding to the discrete part of the spectrum. The multiplicity of the zeros
equals the multiplicity of Ej . (b) They are at the points sµ ≡ zµ which correspond to the
poles of Det>(s), i.e. the poles of the determinant of the scattering matrix on �\H with the
property Re s < 1

2 . The multiplicity is no larger than κ , i.e. the number of scattering channels.
These zeros correspond to the scattering resonances and are our main concern here. (c) Using
formula (45) we can see that there are zeros inZ(s) coming from the poles of −∂s log Det>(s),
sa = 1−za , and sa = za , a = 0, 1, 2 . . .M , corresponding to the residual spectrum. If we have
no residual spectrum (e.g. for congruence groups) we merely have the obvious point z0 = 1.
(d) There are also trivial zeros coming from the Weyl term. These are at the points s = −n,
n = 0, 1, 2 . . . , with multiplicity A

π
(n + 1

2 ). The remaining terms from (44) give rise to poles
of Z(s).

Hence we see that Z(s), which is a quantity expressed in terms of the classical data (i.e.
the length spectra of the periodic orbits), determines the quantum data, namely the eigenvalues
and the scattering resonances. From the numerical point of view this amounts to finding the
zeros of Z(s).

Evaluating equation (44) at the points s and 1 − s we obtain the equation

Z′

Z
(s) +

Z′

Z
(1 − s) = V

(
s − 1

2

)
tan π

(
s − 1

2

)
+

(
s − 1

2

)
(T (s)− T (1 − s)) (46)

where we have used the fact that

π tan π

(
s − 1

2

)
=

∞∑
n=0

(
1

1 − s + n
− 1

s + n

)
. (47)

Using the property log Det>(s) = log Det>(1−s), we see that the final result can be expressed
in terms of the renormalized S-matrix S(s) analytically continued to the whole complex s-
plane in the following form:

∂s(logZ(s)− logZ(1 − s)) = V (s − 1
2 ) tan π(s − 1

2 )− ∂s log DetS(s). (48)

Integrating this we obtain the nice form for the functional equation for Selberg’s zeta function,

Z(1 − s) = DetS(s)

DetS(1/2)
Z(s)e−V ∫ s−1/2

0 x tan πx dx. (49)

Moreover, according to [7] (see also (9)) the quantity DetS( 1
2 ) (arising as an integration

constant) can be fixed to one.

7. Examples

Now we consider some examples to illustrate the general formalism outlined above. Our
first example is Gutzwiller’s leaky torus which represents the best studied example of chaotic
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quantum scattering [8–10, 14]. In this case the Fuchsian group � is generated by two letters,
A = (1 1

1 2

)
and B = (1 −1

−1 2

)
, satisfying the defining relations B−1A−1BA = −W 6. (Recall

that W is the transformation z �→ z + 1, see the beginning of section 2.) This choice gives a
Riemann surface of type (g, κ, e) = (1, 1, 0), i.e. topologically a torus with one point infinitely
far away. In this case the matrix ϕαβ in (3) is a one-by-one unitary matrix, i.e. a phase factor.
The description of the double cosets in (6) is very simple, and it turns out that the Kloosterman
sum S(0, 0; c) is just Euler’s function, i.e. the number of d( mod c) relatively prime to c. Using
this result one then proves that

∞∑
c=1

c−2sS(0, 0; c) = ζ(2s − 1)

ζ(2s)
. (50)

Using this identity in equation (4) with s = 1
2 + ik and the functional relation Z(s) = Z(1 − s)

with Z(s) = �(s/2)ζ(s)π−s/2 satisfied by the Riemann-zeta function, the scattering matrix
can be given the following form:

S�\H(q, k) = −
( q
π

)−2ik �(1/2 − ik)

�(1/2 + ik)

ζ(1 − 2ik)

ζ(1 + 2ik)
. (51)

Now recall equation (14) with |λ| = q and calculate the quantity S(k) ≡ S�\H(k)(SH(k))−1

needed in equations (20)–(23). If we once again apply the functional relation for the Riemann-
zeta function with s = 2ik and −2ik, and the relation�(1± ik) = ±�(ik), it is straightforward
to prove that

S(k) = S�\H(k)(SH(k))−1 = −(2π)−2ik ζ(2ik)

ζ(−2ik)
. (52)

We can see that the ‘renormalized’ S-matrix can be written entirely in terms of a fluctuating
term, the background term containing the � function was eliminated. Our next task is to
calculate the renormalized time delay T (k) of (23). Note that the T �\H(k) part of the time
delay for the leaky torus has already been analysed carefully in the paper of Wardlaw and
Jaworski [23], hence we merely reformulate their result in terms of T (k), which is more
convenient for our purposes. First, we write T (k) in the form

T (k) = 1

k

(
log 2π − 2Re

ζ ′

ζ
(2ik)

)
. (53)

Now we use the formula

−ζ
′

ζ
(s) = s

s − 1
−
∑
C

s

C(s − C) +
∞∑
n=1

s

2n(s + 2n)
− ζ ′

ζ
(0) (54)

with ζ ′
ζ
(0) = log 2π (see pp 52 and 66 of [24]) to write T (k) in terms of the Riemann zeros,

C = 1
2 − 2ikC of ζ(s). Since [24]∑

C

1

C
= 1

2
γ +

1

2
logπ + 1 − log 2π (55)

straightforward calculation yields the result

kT (k) = log 2 − γ +
∞∑
n=1

k2

n(n2 + k2)

− 1/2

(1/2)2 + k2
+
∑
kC>0

(
1/4

(1/4)2 + (k + kC)2
+

1/4

(1/4)2 + (k − kC)2
)
. (56)
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The first three terms correspond to the time delay of −T H of (29), the fourth term corresponds
to the obvious point s0 = 1, E0 = 0 in the residual spectrum. The last term produces the
resonances we are interested in. We see that the special form of T (k) fits into the general
scheme suggested by equations (29)–(32). Moreover, we see that �µ = 1

2 , and kµ = rµ/2,
where rµ, µ = 1, 2, . . . , ranges over the zeros of Riemann’s zeta function.

Our next example covers the case of calculating the time delay T (k) for a three-channel
scattering problem. Let us choose the group � ≡ �(2) of (1) as our Fuchsian group. Note that
for the principal congruence group �(N) (N > 1), g = 1 + µN N−6

12N and κ = µN/N , where

µN = N3

2

∏
p|N(1 −p−2) N > 2, µ2 = 6 is the index of �N in SL(2,Z) [11]. Note that there

are no elliptic points for N > 1, hence for N = 2 we have (g, κ, e) = (0, 3, 0). The Riemann
surface in question is a sphere with three cusps, i.e. pants. It is interesting to note here that
the compact surfaces of type (g, 0, 0) can be decomposed into pants—a fact which is used in
string theory. The S-matrix for this surface is straightforward to calculate following the paper
of Pnueli [10], the result is

S
�\H
αβ (q, k) = −

( q
π

)−2ik �( 1
2 − ik)

�( 1
2 + ik)

ζ(1 − 2ik)

ζ(1 + 2ik)
Rαβ(k) α, β = 1, 2, 3 (57)

where

Rαβ(k) =
(
x y y

y x y

y y x

)
x = 2−4ik

2 − 2−2ik
y = 2−2ik − 2−4ik

2 − 2−2ik
. (58)

It is easy to check that this matrix is as unitary and symmetric as it has to be. Note that up to
the matrix Rαβ(k) we have the same structure as in our previous example. The 3 × 3 matrix
R has no effect on the fluctuating part. In order to calculate its contribution to the time delay
T (k) we note that DetR = (x − y)2(x + 2y) = 2−2ik( 21−2ik−1

21+2ik−1 ), hence we have

i

2k
∂k log DetR(k) = 2 log 2

k

(
1

1 − 2−1+2ik
+

1

1 − 2−1−2ik

)
+ 2 log 2

= log 2

k

(
21 − 12 cos(2k log 2)

5 − 4 cos(2k log 2)

)
. (59)

Since we have three cusps the total time delay is this contribution plus three times the one
obtained from equation (56).

We cannot resist the temptation to present a calculation of the time delay T (E) for yet
another scattering matrix that has appeared in the literature. In this case, however, the scattering
systems are slightly different from the ones described so far. The difference manifests itself in
the presence of elliptic or orbifold points on the surfaces in question. Although these points
render our surface not to be a manifold but rather an orbifold, the scattering contribution to
the trace formula is obviously left intact by these points. Indeed [12, 25], the only effect of
these points is to change the multiplicity of the trivial zeros (i.e. the ones that are at the points
s = −n, n = 1, 2, . . .) of Selberg’s zeta function, and adding a new term to Ns(E) (behaving
asymptotically as O(1)) in the functional equation of Z(s).

This class of scattering systems arises by taking the Fuchsian group as �0(N), i.e. the
Hecke congruence group with a special choice of N . Note that �0(N) is a subgroup of the
modular group containing �(N) of (1) defined as

�0(N) ≡
{
γ ∈ SL(2,Z) : γ ≡

( ∗ ∗
0 ∗

)
( mod N)

}
. (60)

The values of N we are interested in are square-free integers. These are integers of the form
N = p1p2 . . . pr , where r refers to the number of distinct prime factors in the canonical



On Selberg’s trace formula 4371

form of N . It can be shown [12] that the number of scattering channels (inequivalent cusps)
equals κ = 2r . Then, slightly rewriting the result due to Hejhal [12], for S�\H

αβ (q, k) we get
an expression having the same form as equation (57) with α, β = 1, 2, . . . , 2r , and the matrix
Rαβ(k) now having the form

R(k) = ⊗p|NRp(
1
2 + ik) Rp(s) = Mp(1 − s)M−1

p (s) Mp(s) =
(

1 ps

ps 1

)
.

(61)

A straightforward calculation for the time delay yields the expression 2r times the one given
by (56) and the term

i

2k
∂k log DetR(k) = 2r

k

∑
p|N
p logp

(
p − cos(2k logp)

1 − 2p cos(2k logp) + p2

)
. (62)

For N = p we see that we have two channel scattering problems. It is interesting to
examine those choices for the prime p when we have no elliptic fixpoints. Hence in this case
we have a class of �g,2 surfaces. According to [11], there are two types of elliptic fixpoints,
points of order two and three. Let us denote the number of such points by e2, and e3. These
numbers for square-free N are given by the expressions [11]

e2 =
∏
p|N

(
1 +

(−1

p

))
e3 =

∏
p|N

(
1 +

(−3

p

))
(63)

where the values of the quadratic residue symbol are

(−1

p

)
=




0 for p = 2

1 for p ≡ 1 mod 4

−1 for p ≡ 3 mod 4

(64)

(−3

p

)
=




0 for p = 3

1 for p ≡ 1 mod 3

−1 for p ≡ 2 mod 3.

(65)

For N = p we have merely one term in the product, hence the condition for not having any
elliptic point is the simulteneous fulfillment of the linear congruence system p ≡ 2 mod 3, and
p ≡ 3 mod 4. Since (3, 4) = 1 according to the Chinese remainder theorem this system has
merely one solution modulo 4 × 3 = 12. The least prime solving this system is p = 11, hence
for the primes having the form pn = 11 + 12n, n = 0, 1, 2, . . . , we have no elliptic points.
Moreover [11], for the genus we have the formula g = 1 + (p + 1)/12 − e2/4 − e3/3 − κ/2.
Inserting here κ = 2, e2 = e3 = 0, we get the formula gn = (pn + 1)/12 = n + 1. Hence
for p0 = 11 we get a Riemann surface with genus 1 (i.e. a torus) with two cusps. Since
(11, 12) = 1 according to the famous theorem of Dirichlet [28], there are an infinite number
of primes in the arithmetic progression pn = 11 + 12n and we have an infinite number of such
�gn,2 surfaces. Such surfaces have genus g = 1, 2, 4, 5, 6, 7, 9, 11, . . . . Now we see that the
2 × 2 scattering matrices can be parametrized instead of such pn primes, also by the genus gn,
by writing pn = 12gn − 1 in equation (61). Hence in this case the matrix-valued term in the
scattering matrix depends not only on the energy, but also on the genus of the surface.

Even though this method presents a multitude of chaotic scattering problems, we see that
in all of these examples chaos always manifests itself through the presence of the same term,
namely the common summand, equation (56). Moreover, we also know that the irregular
distribution of scattering resonances can be traced back to the corresponding distribution of
the nontrivial zeros of Riemann’s zeta function. Indeed, it is not hard to see that the terms



4372 P Lévay

reflecting the multichannel nature of the scattering problem produce no new zeros in Selberg’s
zeta function, hence no new resonances will be found.

Do we always obtain time delays with the same structure for arithmetic subgroups of
the modular group? The answer is negative. Even for the group �(N) (as observed by
Pnueli [10]) we obtain expressions with Dirichlet L-series replacing Riemann’s zeta function
(see also [12]). Unfortunately, we are supplied with a limited number of scattering matrices
that were calculated explicitly. For non-arithmetical subgroups, as far as the author knows, no
case has ever been analytically solved.

8. Including an integer magnetic field

In this section we examine how the inclusion of an integer magnetic field makes its appearance
in Selberg’s trace Formula. In this case the corresponding quantum systems are the ones arising
from the quantization of the classical motion of a particle on �g,κ in a constant magnetic field
B. In what follows we first summarize known results that can be found in [5, 10, 12, 14].

When one would like to study electrodynamics on topologically non-trivial configuration
spaces Q = �g,κ , the field strength F and the vector potential A have to be regarded as the
curvature and connection forms of a principal U(1) bundle over Q. F is a two-form which
is closed due to Maxwell’s equations, however, it cannot always be represented in the form
F = dA globally, if H 2(Q,R) is nontrivial. However, in spite of H 2(Q,R) being nontrivial
we still have the chance to define elctrodynamics on Q provided [ 1

2π F ] ∈ H 2(Q,Z) i.e., if
F suitably normalized defines an integral second cohomology class. More precisely, there
exists a complex line bundle L over Q with connection ∇, with F being its curvature form
iff [ 1

2π F ] ∈ H 2(Q,Z). Then in the local coordinates xa , a = 1, 2, the connection reads
as ∇a = ∂a − iAa , with Aa a local vector potential in a given gauge. The Hamiltonian is
H = −∇2, and the wavefunctions of the system are (local) sections of L.

Making use of Riemann uniformization, we again represent our Q = �g,κ as �\H.
With the help of the Poincaré metric on H we can define an orientation and the volume form
y−2 dx ∧ dy on �g,κ . (The volume form is invariant with respect to the action of �.) A
constant magnetic field is defined by demanding that F be proportional the volume form,
i.e. F = By−2 dx ∧ dy. According to the Gauss–Bonnet theorem �g,κ has finite volume
V = 2π(2g + κ − 2), hence combining this with the fact that [ 1

2π F ] ∈ H 2(Q,Z) for the flux
we obtain

∫
F = BV = 2πZ, i.e. the flux on�g,κ has to be quantized. Moreover, we see that

B must be rational. However, further arguments [5, 14] show that a non-integer B can only
be introduced consistently provided we also introduce fluxes through the cusps. Hence in the
absence of fluxes we have B ∈ Z. In the following we suppose that no additional fluxes are
present, hence B ∈ Z and moreover, we take B � 2.

Choosing the gauge A = y−1B dx, our physical system is governed by the Hamiltonian
H(B) = −∇2 = −y2(∂2

x + ∂2
y ) + 2iBy∂x + B2, subject to the boundary condition [5, 10, 14]

ψ(γ z) =
(
cz+d
|cz+d|

)2B
ψ(z), where γ ∈ �.

Now we are ready to present Selberg’s trace formula for the HamiltonianH(B), with B a
constant magnetic field. Let λj = 1

4 +B2 + kj 2 denote an eigenvalue belonging to the discrete
part of the spectrum, i.e. we have H(B)ψj = λjψj . Moreover, let C = max[B − 1

2 ,
1
2 ] and

κ � 1, B > 0, and h(k) be a function satisfying the following conditions:

h(k) is even

h(k) holomorphic in the strip |Im k| � C + ε
h(k) � (|k| + 1)−2−ε in the strip.

(66)
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As usual, let g(u) = 1
2π

∫ +∞
−∞ e−iukh(k) dk be the Fourier transform of h(k). Then Selberg’s

trace formula for noncompact surfaces without elliptic points in the presence of a constant
magnetic field B is [12]∑
j

h(kj ) = V

4π

∫ +∞

−∞
kh(k)

sinh 2πk

cosh 2πk + cos 2πB
dk +

∑
PPO

∞∑
n=1

l(p)

2 sinh(nl(p)/2)
g(nl(p))

+
V

4π

∑
1�n<2B,n odd

(2B − n)h
(

i
(
B − n

2

))

+κ
∫ ∞

0

g(u)

eu/2 − e−u/2 (1 − coshBu) du

+
1

4
h(0)Tr

(
I −>

(
B,

1

2

))
− κg(0) log 2 − κ

2π

∫ ∞

−∞
h(k)ψ(1 + ik) dk

+
1

4π

∫ ∞

−∞
h(k)Tr

(
>′
(
B,

1

2
+ ik

)
>

(
B,

1

2
+ ik

)−1
)

dk (67)

where the κ × κ matrix >(B, 1
2 + ik) proportional to the the scattering matrix in the presence

of a constant integer magnetic field is [10]

>(B, 1/2 + ik) = (−1)B
�(1/2 + ik)2

�(1/2 + B + ik)�(1/2 − B + ik)
>(1/2 + ik) (68)

where >( 1
2 + ik) is proportional to the scattering matrix without magnetic field defined by

equations (4) and (8).
Now we would like to consider the B-dependent terms in the trace formula for the B

integer. First we examine the term I1(B) = − i
4π

∫∞
−∞ h(k)∂k log Det(>(B, 1

2 + ik)) dk. We

easily deduce that Det>(B + 1, 1
2 + ik) =

(
1/2+B−ik

1/2+B−f ik

)κ
Det>(B, 1

2 + ik). Hence

I1(B)− I1(B − 1) = − κ

2π

∫ ∞

0
h(k)

2B − 1

(B − 1
2 )

2 + k2
. (69)

Since h(k) is an even function, in the last integral we can substitute the expression h(k) =
2
∫∞

0 dug(u) cos ku and use the integral∫ ∞

0
dk cos ku

1

(B − 1/2)2 + k2
= π

2B − 1
e−(B−1/2)u B − 1

2 > 0 (70)

to arrive at the result

I1(B)− I1(B − 1) = −κ
∫ ∞

0
dug(u)e−(B−1/2)u. (71)

Now we examine the other term I2(B) ≡ κ
∫∞

0
g(u)

eu/2−e−u/2 (1 − coshBu) du modifying the
parabolic contribution when a nonzero B field is present. First we note that

coshBu− cosh(B − 1)u = 1
2 (e

u/2 − e−u/2)(e(B−1/2)u − e−(B−1/2)u). (72)

Using this and the definition of g(u) for the quantity I2(B)− I2(B − 1) we get the expression

I2(B)− I2(B − 1) = κ

2

∫ ∞

0
dug(u)(e−(B−1/2)u − e(B−1/2)u). (73)

For J (B) ≡ I1(B) + I2(B) (the B-dependent terms in the parabolic contribution) we get the
formula

J (B)− J (B − 1) = −κ
∫ ∞

0
dug(u) cos i

(
B − 1

2

)
u = −κ

2
h

(
i

(
B − 1

2

))
. (74)



4374 P Lévay

Applying this formula successively we obtain

J (B) = J (0)− κ

2

∑
1�n<2B,n odd

h
(

i
(
B − n

2

))
. (75)

Hence for integer magnetic field the B-dependence manifests itself in the parabolic terms
merely in the form of the sum appearing in equation (75).

The first term on the right-hand side of the trace formula for integer B reduces to the well
known term A

4π

∫ +∞
−∞ kh(k) tanh(πk) dk. Introducing the numbers for B � 2

Dm(B) ≡ V

4π
(2B − 2m− 1)− κ

2
= (2B − 2m− 1)(g − 1) + (B −m− 1)κ

m = 0, 1, . . . (76)

and combining the third term on the right-hand side of trace formula (67) with the term
containing the sum in (75), we get the sum∑

0�m<B−1/2

Dm(B)h(i(B −m− 1
2 )) =

∑
0�m<B−1/2

Dm(B)h(km) (77)

where using km = i(B − m − 1
2 ) in the formula Em = 1

4 + B2 + km2 we get Em =
(2m + 1)B − m(m + 1), m = 0, 1, . . . , B − 1. Note that E0 = B and EB−1 = B2, hence
Em ∈ [B,B2]. This part of the spectrum is reminiscent of the usual Landau levels, moreover,
the numbers Dm(B) are the degeneracies of these Landau levels [26, 27].

According to equation (75) for the integer magnetic field the dependence on B can be
entirely transferred to the term containing the sum over discrete Landau levels. Hence the
integer magnetic field does not effect the scattering states in the trace formula. Moreover,
according to [5] the second term on the right-hand side of the trace formula (67) (the periodic
orbit sum) describing the ‘chaotic’ part of the spectrum when an integer magnetic field is
present, can be mapped to the corresponding periodic sum without a magnetic field. More
precisely, there is a one-to-one mapping between the classical periodic orbits with and without
a magnetic field. This reflects the fact that the ‘chaotic’ part of the spectrum with a B field
can be obtained from the free one by a constant shift of B2. Collecting everything for the final
form of the trace formula for a particle moving in an integer magnetic field on �g,κ we get∑
j

h(kj ) = V

4π

∫ +∞

−∞
kh(k) tanh(πk) dk +

∑
0�m<B−1/2

Dm(B)h

(
i

(
B −m− 1

2

))

+
∑
PPO

∞∑
n=1

l(p)

2 sinh(nl(p)/2)
g(nl(p)) +

κ

2
h(0)− 1

2π

∫ ∞

0
h(E)T (E) dE (78)

where T (E) is the renormalized time delay introduced in equations (22) and (23). Note that
T (E) is not dependent on B. Indeed, the only dependence in the trace formula (apart from the
aforementioned constant shift in the ‘chaotic’ part of the spectrum), comes from the second
term reflecting the appearence of the Landau levels with appropriate degeneracies.

9. Conclusions

In this paper we considered the problem of quantization of the motion of a charged particle on
a surface of constant negative curvature, with or without the influence of a constant magnetic
field. The classical motion on such surfaces is known to be strongly chaotic. We have chosen a
special class of such surfaces, with points infinitely far away with respect to the metric on them.
Such points describe scattering channels. A particle can enter through some of these channels
and leave on any of them after some time. A natural physical quantity measuring the time spent
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during the scattering process is the Wigner–Smith time delay. For usual scattering systems
where the interaction is defined by a potential, the time delay is defined as the difference
between the time spent by the scattered particle within the region of the potential, and the
time that it would have spent in the same region had it moved without the influence of the
potential. However, the definition of the time delay is an intricate one when the interaction is
merely defined by enforcing special boundary conditions on the wavefunction. In this paper
we suggested to identify the free dynamics as the motion on the entire Poincaré upper half-
plane H, and the interacting dynamics as restricting this motion to some fundamental domain
of H tessellating it. This domain is defined by a discrete subgroup � of the isometry group
of H. The special form of boundary conditions reflects the special geometry of the surfaces.
Using Selberg’s trace formula for noncompact Riemann surfaces, we showed that the natural
quantity for the time delay associated with such ‘geometric’ scattering is the renormalized
time delay which is the time delay associated with the surface in question minus the time delay
corresponding to the scattering problem on the Poincaré upper half-plane uniformizing our
surface. Based on known results we clarified the pole structure of the scattering matrix, and
examined how these poles manifest themselves in the trace formula. The physical meaning of
these poles is clarified after introducing Selberg’s zeta function which is described by purely
classical data, i.e. the length spectra of classical periodic orbits. It was shown that the a part
of the nontrivial zeros of Selberg’s zeta function can be related to the presence of poles in the
S-matrix of the corresponding quantal problem. These poles describe scattering resonances.
It was also shown that the inclusion of an integer B � 2 magnetic field has no effect on the
features of these resonances. Our results were illustrated for the surfaces �1,1 (Gutzwiller’s
leaky torus), �0,3 (pants), and a class of �g,2 surfaces.
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